Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.

Identifieur interne : 000E91 ( Main/Exploration ); précédent : 000E90; suivant : 000E92

Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.

Auteurs : Mohamed Anwar Bin-Umer [États-Unis] ; John E. Mclaughlin [États-Unis] ; Matthew S. Butterly [États-Unis] ; Susan Mccormick [États-Unis] ; Nilgun E. Tumer [États-Unis]

Source :

RBID : pubmed:25071194

Descripteurs français

English descriptors

Abstract

Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance.

DOI: 10.1073/pnas.1403145111
PubMed: 25071194
PubMed Central: PMC4136610


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.</title>
<author>
<name sortKey="Bin Umer, Mohamed Anwar" sort="Bin Umer, Mohamed Anwar" uniqKey="Bin Umer M" first="Mohamed Anwar" last="Bin-Umer">Mohamed Anwar Bin-Umer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mclaughlin, John E" sort="Mclaughlin, John E" uniqKey="Mclaughlin J" first="John E" last="Mclaughlin">John E. Mclaughlin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Butterly, Matthew S" sort="Butterly, Matthew S" uniqKey="Butterly M" first="Matthew S" last="Butterly">Matthew S. Butterly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Susan" sort="Mccormick, Susan" uniqKey="Mccormick S" first="Susan" last="Mccormick">Susan Mccormick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tumer, Nilgun E" sort="Tumer, Nilgun E" uniqKey="Tumer N" first="Nilgun E" last="Tumer">Nilgun E. Tumer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and tumer@aesop.rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:regionArea>
<wicri:noRegion>New Brunswick</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25071194</idno>
<idno type="pmid">25071194</idno>
<idno type="doi">10.1073/pnas.1403145111</idno>
<idno type="pmc">PMC4136610</idno>
<idno type="wicri:Area/Main/Corpus">000E05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E05</idno>
<idno type="wicri:Area/Main/Curation">000E05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E05</idno>
<idno type="wicri:Area/Main/Exploration">000E05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.</title>
<author>
<name sortKey="Bin Umer, Mohamed Anwar" sort="Bin Umer, Mohamed Anwar" uniqKey="Bin Umer M" first="Mohamed Anwar" last="Bin-Umer">Mohamed Anwar Bin-Umer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mclaughlin, John E" sort="Mclaughlin, John E" uniqKey="Mclaughlin J" first="John E" last="Mclaughlin">John E. Mclaughlin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Butterly, Matthew S" sort="Butterly, Matthew S" uniqKey="Butterly M" first="Matthew S" last="Butterly">Matthew S. Butterly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Susan" sort="Mccormick, Susan" uniqKey="Mccormick S" first="Susan" last="Mccormick">Susan Mccormick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tumer, Nilgun E" sort="Tumer, Nilgun E" uniqKey="Tumer N" first="Nilgun E" last="Tumer">Nilgun E. Tumer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and tumer@aesop.rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick</wicri:regionArea>
<wicri:noRegion>New Brunswick</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Drug Resistance, Fungal (genetics)</term>
<term>Food Contamination (MeSH)</term>
<term>Food Safety (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitophagy (drug effects)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Trichothecenes (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Contamination des aliments (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (effets des médicaments et des substances chimiques)</term>
<term>Mitochondries (métabolisme)</term>
<term>Résistance des champignons aux médicaments (génétique)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Sécurité des aliments (MeSH)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Trichothécènes (toxicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mitochondria</term>
<term>Mitophagy</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mitochondries</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Résistance des champignons aux médicaments</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Mitochondries</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Trichothecenes</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Trichothécènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Food Contamination</term>
<term>Food Safety</term>
<term>Gene Knockout Techniques</term>
<term>Genes, Fungal</term>
<term>Humans</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Contamination des aliments</term>
<term>Gènes fongiques</term>
<term>Humains</term>
<term>Stress oxydatif</term>
<term>Sécurité des aliments</term>
<term>Techniques de knock-out de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25071194</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.</ArticleTitle>
<Pagination>
<MedlinePgn>11798-803</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1403145111</ELocationID>
<Abstract>
<AbstractText>Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bin-Umer</LastName>
<ForeName>Mohamed Anwar</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McLaughlin</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Butterly</LastName>
<ForeName>Matthew S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Susan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tumer</LastName>
<ForeName>Nilgun E</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; and tumer@aesop.rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014255">Trichothecenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005506" MajorTopicYN="N">Food Contamination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059022" MajorTopicYN="N">Food Safety</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063306" MajorTopicYN="N">Mitophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014255" MajorTopicYN="N">Trichothecenes</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Fusarium graminearum</Keyword>
<Keyword MajorTopicYN="N">Fusarium head blight</Keyword>
<Keyword MajorTopicYN="N">deoxynivalenol</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25071194</ArticleId>
<ArticleId IdType="pii">1403145111</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1403145111</ArticleId>
<ArticleId IdType="pmc">PMC4136610</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2009 Nov;5(8):1186-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19806021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Food Sci Technol. 2014;5:351-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24422587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Feb;6(2):278-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Pathol. 2010 Apr;38(3):429-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2010 Jul;11(7):548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2010 Sep;84(9):663-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 2010 Dec;170(6):377-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20549560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2010 Dec;10(8):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20629757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Apr 15;124(Pt 8):1339-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2011 Apr;43(2):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21360288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 27;287(5):3265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2011 Dec;3(12):1484-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22295173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2013 Jan;45(1):30-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22801005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2013 Feb 27;217(2):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23274714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e60484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23544145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Jun;194(2):341-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23733851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Jun;280(12):2743-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23351085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Nov;16(15):1421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11054823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(24):8483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2003 Jul 20;143(2):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12749813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 19;278(38):36027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1974 Jan;71(1):30-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4521056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Jan;78(1):238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7017711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Aug;79(15):4706-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6750608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jul;26(13):4818-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Feb 6;581(3):443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17250833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Apr;5(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Aug 8;55(16):6487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Feb;8(3):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18232057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 May;10(5):602-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 Jul;17(1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2009 Oct 15;18(R2):R169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21883-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
<li>New Jersey</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Bin Umer, Mohamed Anwar" sort="Bin Umer, Mohamed Anwar" uniqKey="Bin Umer M" first="Mohamed Anwar" last="Bin-Umer">Mohamed Anwar Bin-Umer</name>
</region>
<name sortKey="Butterly, Matthew S" sort="Butterly, Matthew S" uniqKey="Butterly M" first="Matthew S" last="Butterly">Matthew S. Butterly</name>
<name sortKey="Mccormick, Susan" sort="Mccormick, Susan" uniqKey="Mccormick S" first="Susan" last="Mccormick">Susan Mccormick</name>
<name sortKey="Mclaughlin, John E" sort="Mclaughlin, John E" uniqKey="Mclaughlin J" first="John E" last="Mclaughlin">John E. Mclaughlin</name>
<name sortKey="Tumer, Nilgun E" sort="Tumer, Nilgun E" uniqKey="Tumer N" first="Nilgun E" last="Tumer">Nilgun E. Tumer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25071194
   |texte=   Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25071194" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020